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Abstract
Neutron diffraction studies of polycrystalline R3Mn4Sn4 (R = La, Pr, Nd)
intermetallic compounds with the orthorhombic Gd3Cu4Ge4-type crystal
structure indicate the existence of different magnetic structures. The magnetic
structures were studied with the support of group theoretical considerations. For
R = La a sine wave modulated structure described by the propagation vector
k = (kx, 0, 0) is observed below TN = 300 K. This ordering is stable down
to 1.5 K. For the Pr3Mn4Sn4 and Nd3Mn4Sn4 compounds the Mn moments
form a non-collinear antiferromagnetic structure below the Néel temperatures
of 230 and 210 K, respectively. Below Tt = 25 and 60 K for R = Pr and Nd,
respectively, the rare earth Pr and Nd moments also order and form collinear
magnetic structures while the magnetic order of the Mn moments remains
unchanged.

1. Introduction

The investigation presented in this paper is a part of a more complete study, which is expected
to systematize the magnetic properties—including magnetic structures—of the RmTnXp rare
earth intermetallic compounds, where R is a rare earth atom, T is a d-electron atom and X is a p-
electron atom. For these compounds the exchange interactions and the crystalline electric field
are the two factors that influence the stability of the magnetic ordering of rare earth magnetic
moments. Competition between these two interactions leads to a large variety of magnetic
structures observed in ternary rare earth intermetallic compounds [1]. In this particular study
we have investigated the R3Mn4Sn4 (R = La, Pr, Nd) compounds, which crystallize in the
orthorhombic Gd3Cu4Ge4-type structure [2] (space group Immm, see figure 1). In this
structure the rare earth atoms occupy two non-equivalent crystallographic positions. Bulk
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Figure 1. Crystal structure of the R3Mn4Sn4 compounds. Only the R and Mn atoms are presented.

magnetic measurments indicated that these compounds are antiferromagnets with the Néel
temperature equal to 16 K for R = Pr and to 45 K for R = Nd. In the case of La3Mn4Sn4

the temperature dependence of the magnetic susceptibility has a broad maximum at about
300 K. For the temperature dependences of the magnetic susceptibilities of the Pr and Nd
compounds no anomalies are observed close to room temperature [3]. The maxima of the
magnetic susceptibility at 16 K for Pr3Mn4Sn4 and 45 K for Nd3Mn4Sn4 imply the onset
of antiferromagnetic ordering at low temperatures. Above these temperatures the inverse
magnetic susceptibility obeys the Curie–Weiss law in both compounds. These results suggest
that in La3Mn4Sn4 the Mn magnetic moments order at 300 K while in Pr3Mn4Sn4 and
Nd3Mn4Sn4 probably only the rare earth moments order at low temperatures while the Mn
moments do not. This contrasts the results for the RMn2X2 (X = Si, Ge) compounds, in
which two regions with different magnetic properties exist: at low temperatures the magnetic
moments of the rare earth and Mn atoms order while at high temperature only the Mn moments
are ordered [4]. To clear up these conflicting results, neutron diffraction measurements as a
function of temperature were performed. The paper reports the results of these investigations
and the crystal and magnetic structure parameters of the examined R3Mn4Sn4 (R = La, Pr, Nd)
compounds are listed.

2. Experimental procedure

The polycrystalline samples, each with total weight of about 10 g, were synthesized by arc
melting of stoichiometric amounts of 3 N for rare earth and Mn and 4 N purity for Sn elements in
a Ti/Zr gettered argon atmosphere. The reaction products were annealed at 800 ◦C for a week.
In order to check their purity, the samples were examined by x-ray powder diffraction (Cu Kα

radiation). The peaks in the x-ray patterns were indexed in the orthorhombic Gd3Cu4Ge4-type
structure.

Neutron diffractograms were obtained using the E6 instrument at the BERII reactor,Hahn–
Meitner Institut, Berlin. The incident neutron wavelength was 2.441 Å. The diffraction patterns
were recorded at different temperatures between 1.5 K and room temperature. The Rietveld-
type programme FULLPROF [5] was used to analyse the neutron diffraction data.
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3. Symmetry analysis

Models used for refinement of magnetic structures are usually presented as sets of Fourier
coefficients describing the magnetic moment components on particular ions. The use of
symmetry is restricted to imposing extra constraints for magnetic moments localized on
symmetry equivalent atoms. The method used here is based on the theory of representations
of space groups and was first proposed by Bertaut [6] and Izyumov [7]. It gives the possibility
to consider all the possible models for magnetic structures consistent with a given crystal
structure with symmetry space group G. According to this method the magnetic structure
given by S can be expressed in the coordinate system formed by the basic vectors �

kl ,ν
λ of the

irreducible representations of the group G. Such a coordinate system is the best one matching
the symmetry of the problem and it provides the simplest form of the magnetic structure
description because it requires the lowest number of independent parameters. S is described
as a linear combination of basic vectors (magnetic modes) and given by

S =
∑

l,ν,λ

ckl ,ν
λ �

kl ,ν
λ (1)

where l is the number of k-vectors determined by experiment, ν is the number of irreducible
representations and λ the dimension of νth irreducible representations given by the symmetry
of the crystal structure. The symmetry group G(k) of the k vectors is a subgroup of the space
group G. From this fact it follows that the sets of equivalent positions in the group G, the so-
called orbits in G, may split into independent sets of equivalent positions in G(k). Thus, one
orbit in the group G can lead to two or more orbits in the G(k) subgroup. The possible relations
between the magnetic moments inside a given orbit are limited by symmetry and a single set of
parameters describes the magnetic structure of all atoms belonging to the same orbit. Symmetry
allows independent magnetic orderings on different orbits. For orbits belonging to different
representations, the magnetic moments, phases etc differ and the magnetic moments localized
at atoms belonging to one orbit may order at temperature T1 while the moments belonging to
another orbit order at T2. The relations between the different orbits depend on the minimum
of energy of the full structure, not on symmetry.

The form of the basic vectors and the information about which of the representations take
part in the phase transition under consideration are directly given by the theory of groups and
representations. In this work we use the computer programme MODY [8], which is based on
the theory of groups and representations, to calculate this information. It is important to note
that the basis vectors have the same translational properties as Bloch functions. Therefore, the
basis vectors may be defined on positions of given orbit in the elementary cell of the crystal
as well as in the elementary cell translated by a lattice vector t, which just corresponds to a
multiplication by eik1t. The different sets of ckl ,ν

λ parameters, where ckl ,ν
λ may be complex,

correspond to different models of the magnetic structure and may be used as good order
parameters in the Landau–Ginzburg theory of phase transitions. However, not all of the
possible ckl ,ν

λ are allowed, because the parameters should be selected in such a way that the
resulting magnetic moments related to all atoms have real values. This condition influences
the set of equations which the ckl ,ν

λ have to satisfy and as a result the number of independent
free parameters is reduced and strictly determined. Because of the Bloch-like form of the basis
vectors and the necessity of getting real values for S, only one of the k-vectors in the set of
symmetry related k-vectors (the so-called star of k) has to be included in the linear combination
for S (see equation (1)) if the magnetic cell is the same as the crystallographic unit cell or
doubled in any direction (ki = 0 or 1

2 ). For any other commensurate or incommensurate
magnetic structure both the k and −k vectors in the star of k must be included in a linear
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Figure 2. Neutron diffraction patterns of La3Mn4Sn4 determined at 1.5 and 300 K.

combination describing S. The essential fact is that magnetic phase transitions usually take
place according to one irreducible representation with a not too large dimension.

The situation when the magnetic structure is described by basis vectors belonging to
different irreducible representations indicates that the expression of the free energy of the
structure cannot be limited only to the quadratic approximation. The free energy has the
symmetry of a given space group, and therefore must be invariant under the action of this
group. This means that the free energy transforms according to the identity representation of
the given space group. Because the free energy may be presented as an nth-order polynomial
of states, it may be written as a polynomial of products of the basic vectors of the irreducible
representations used in the description of these states. It then follows from the theory of
representations [7] that the products of basic vectors transform according to the direct product
of representations to which these basic vectors belong. The direct product of representations is
usually reducible and may be decomposed into irreducible representations. In the free energy
only products of basic vectors, which include the identity representation in the decomposition,
may appear. In the representation theory, it is proved that the second order product contains
the identity representation only in the case when it is a product representation by itself. For this
reason, it follows that the expression for the free energy the second order coupling between
two states may appear only if these states belong to the same representation.

4. Results

4.1. Crystal structure

The neutron diffraction patterns recorded at 300 K for La3Mn4Sn4 (see figure 2) and at 260 K
for Pr3Mn4Sn4 (figure 3) and Nd3Mn4Sn4 (figure 4) confirmed that these compounds crystallize
in the orthorhombic structure of the Gd3Cu4Ge4 type described by the Immm space group.
The rare earth atoms occupy two sites: 2d ( 1

2 , 0, 1
2 ) and 4e (x, 0, 0). The Mn atoms are situated

at the 8n (x, y, 0) sites and the Sn atoms are at 4f (x, 1
2 , 0) and 4h (0, y, 1

2 ) sites in the crystal
unit cell. The determined values of the lattice parameters a, b and c as well as the positional
parameters corresponding to the minimum of the reliability factor are listed in table 1. The
crystal structure of these compounds is shown in figure 1.
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Figure 3. Neutron diffraction patterns of Pr3Mn4Sn4 determined at 1.5, 40 and 260 K.

Figure 4. The temperature dependence of the Nd3Mn4Sn4 neutron diffraction patterns measured
in the temperature range 1.5–260 K (at 1.5, 20, 30, 35, 40, 45, 50, 55, 60, 120, 200, 220, 230, 240
and 260 K). The angular range (2θ ) was from 5 to 60◦ .

4.2. Magnetic structure

The neutron diffraction patterns recorded at low temperatures reveal the presence of additional
peaks of magnetic origin for all three compounds.

4.2.1. La3 Mn4 Sn4. The additional peaks of magnetic origin that are observed in the neutron
diffraction pattern at 1.5 K for La3Mn4Sn4 (see figure 2) may be indexed with the propagation
vector k = (kx, 0, 0) where kx is equal to 0.52 r.l.u. (r.l.u. stands for reciprocal length units).
For this k-vector the 8n crystallographic positions split into two independent orbits, k and −k,
of the G(k) group. This means that the symmetry allows independent ordering of magnetic
moments S and S′ localized on atoms belonging to the two different orbits. The magnetic
moments of the Mn atoms in the 8n sublattice occupy the following positions in the crystal unit
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Table 1. The refined structural parameters of La3Mn4Sn4, Pr3Mn4Sn4 and Nd3Mn4Sn4 (space
group Immm (no 71)). The standard deviations are given in brackets.

Compound La3Mn4Sn4 Pr3Mn4Sn4 Nd3Mn4Sn4

T (K) 300 260 260
a (Å) 15.291(5) 15.010(9) 14.962(7)
b (Å) 7.458(2) 7.451(4) 7.427(3)
c (Å) 4.661(1) 4.572(3) 4.551(2)
V (Å3) 531.6(3) 511.3(5) 505.7(4)
xR 0.1282(8) 0.123(3) 0.126(1)
xMn 0.333(1) 0.314(2) 0.328(2)
yMn 0.193(2) 0.171(4) 0.183(3)
xSn 0.2135(9) 0.227(2) 0.215(1)
ySn 0.196(2) 0.192(3) 0.207(2)
RBragg (%) 14.6 15.7 16.3
Rpro f (%) 9.4 16.9 12.9

cell: S1(x, y, 0),S2(x̄, ȳ, 0),S3(x̄, y, 0),S4(x, ȳ, 0),S5(
1
2 +x, 1

2 + y, 1
2 ),S6(

1
2 −x, 1

2 − y, 1
2 ),

S7(
1
2 − x, 1

2 + y, 1
2 ),S8(

1
2 + x, 1

2 − y, 1
2 ). The 1, 4, 5 and 8 moments belong to the first orbit

whereas 2, 3, 6 and 7 moments to the second one. The proposed models for the magnetic
orderings may be different for both orbits,and they should both be included in the model used to
fit to the experimental diffraction pattern. For the Immm group and k = (kx, 0, 0) there are four
one-dimensional irreducible representations. At the 8n positions the symmetry analysis allows
two irreducible representations once (τ1 and τ4) and two irreducible representations twice (τ2,
τ ′

2 and τ3, τ ′
3) for each orbit. The components of the basis vectors (e.g. the magnetic modes)

of these irreducible representations are quoted in table 2. The symmetry analysis calculations
show that for La3Mn4Sn4 two independent parameters −cν and �ν for the first orbit and
dν and �ν for the second orbit may describe all possible models of magnetic structures. The
mixing coefficients in equation (1) are correspondingly Ck,ν

1 = cνei�ν

, C−k,ν
1 = −cνei(πkx −�ν),

C ′k,ν
1 = dνei�ν

, C ′−k,ν
1 = −dνei(πkx −�ν).

There are two two-dimensional magnetic phase transition order parameters, given by
pν = (Ck,ν

1 , C−k,ν
1 ) and p′ν = (C ′k,ν

1 , C ′−k,ν
1 ), respectively. For this pair of free parameters

the best fit to the experimental data is for the irreducible representations τ3 [9] with c3 = d3 =
µ0 = 5.89(9) µB and 
 = (�3 − �3) = 0.24π . It is important to note that it is impossible
to determine the absolute values of �3 and �3 from the diffraction patterns of polycrystalline
samples, only the difference. This is in fact a global phase calibration preserving the phase
differences between the two modes on the same ion and between various atoms.

The resulting magnetic structure may be written as

S(1 + t) = S(4 + t) = µ0ey cos(kt + �3)

S(5 + t) = S(8 + t) = µ0ey cos(kt + πkx + �3)

S(2 + t) = S(3 + t) = µ0ey cos(kt + �3)

S(6 + t) = S(7 + t) = µ0ey cos(kt + πkx + �3)

where ey is the vector along the b-axis, k is the propagation vector and t the lattice translation
vector.

The temperature dependences of the intensity of magnetic peaks shown in figure 5(b)
suggest that the magnetic ordering is stable up to the Néel temperature, equal to 300 K. The
value of the kx component of the propagation vector increases with increasing temperature to
the value of 0.61 r.l.u. at T = 270 K (see figure 5(a)).
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Figure 5. The temperature dependences of (a) the kx component of the propagation vector for
La3Mn4n4, (b) the intensities of the 201− , 111+/201+ and 102−/100− magnetic Bragg peaks
for La3Mn4Sn4, (c) the 100 and 200 magnetic Bragg peaks for Pr3Mn4Sn4 and (d) those for
Nd3Mn4Sn4.

4.2.2. Pr3 Mn4 Sn4. On the neutron diffraction pattern of Pr3Mn4Sn4 the additional peaks
of magnetic origin are observed at 1.5 K (see figure 3). These peaks could be indexed in
the conventional crystal unit cell but with antiferromagnetic coupling of atoms related by the
( 1

2
1
2

1
2 ) centring translations corresponding to the magnetic propagation vector k = (1, 1, 1).

The Pr magnetic moments occupy two sites with the following positions in the crystal unit
cell:

• 4e sites: S1(x, 0, 0),S2(x̄, 0, 0),S3(
1
2 + x, 1

2 , 1
2 ),S4(

1
2 − x, 1

2 , 1
2 ) and

• 2d sites: S5(
1
2 , 0, 1

2 ),S6(0, 1
2 , 0).

The temperature dependence of the intensities of the 100 and 200 reflections (see figure 5(c))
reveals that with increasing temperature the magnetic structure changes.

For the Immm space group and vector k = (1, 1, 1) the 4e and 8n sites each form one
orbit of the G(k) group. For the 4e case the symmetry analysis shows that six one-dimensional
irreducible representations are admissible—each of them only once. For the 8n positions eight
one-dimensional irreducible representations are admissible—four of them twice. Because the
magnetic cell is the same as the crystallographic cell, only one k-vector has to be taken into
account in the linear combination in equation (1) for getting the magnetic structure models.
Each magnetic structure model may be described by the basis vector of the corresponding
irreducible representation and one free parameter Ck,ν

1 = µi , which represents the magnitude
of the i th magnetic moment. The components of the basis vectors (e.g. the magnetic modes)
of the irreducible representations for vector k = (1, 1, 1) for the 4e sites are quoted in table 3
and the corresponding ones for the 8n sites are quoted in table 4.
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Table 2. Basic vectors of the irreducible representations for k = (kx , 0, 0) of the Immm space
group in the 8n positions. The magnetic modes related to the moments on sites 5, 8 and 6, 7 are the
modes for sites 1, 4 and 2, 3, respectively, multiplied by eiφ for k and e−iφ for −k, where φ = πkx .

(x, y, 0) (x̄, ȳ, 0) (x̄, y, 0) (x, ȳ, 0)

k

τ1 1st orbit (0, 0, 1) (0, 0, −1)
2nd orbit (0, 0, −1) (0, 0, 1)

τ2 1st orbit (1, 0, 0) (1, 0, 0)
2nd orbit (1, 0, 0) (1, 0, 0)

τ ′
2 1st orbit (0, 1, 0) (0, −1, 0)

2nd orbit (0, −1, 0) (0, 1, 0)
τ3 1st orbit (0, 1, 0) (0, 1, 0)

2nd orbit (0, 1, 0) (0, 1, 0)
τ ′

3 1st orbit (1, 0, 0) (−1, 0, 0)
2nd orbit (1, 0, 0) (−1, 0, 0)

τ4 1st orbit (0, 0, 1) (0, 0, 1)
2nd orbit (0, 0, 1) (0, 0, 1)

−k

τ1 1st orbit (0, 0, e−iφ ) (0, 0, −e−iφ)
2nd orbit (0, 0, −e−iφ) (0, 0, e−iφ)

τ2 1st orbit (e−iφ, 0, 0) (e−iφ, 0, 0)
2nd orbit (e−iφ, 0, 0) (e−iφ, 0, 0)

τ ′
2 1st orbit (0, −e−iφ, 0) (0, e−iφ, 0)

2nd orbit (0, e−iφ, 0) (0, −e−iφ, 0)
τ3 1st orbit (0, −e−iφ, 0) (0, −e−iφ, 0)

2nd orbit (0, −e−iφ, 0) (0, −e−iφ, 0)
τ ′

3 1st orbit (e−iφ, 0, 0) (−e−iφ, 0, 0)
2nd orbit (e−iφ, 0, 0) (−e−iφ, 0, 0)

τ4 1st orbit (0, 0, e−iφ ) (0, 0, e−iφ)
2nd orbit (0, 0, e−iφ) (0, 0, e−iφ )

The analysis of the magnetic peak intensities indicates that at 1.5 K the 4e Pr moments
are ordered in the xy-plane and form a collinear, antiferromagnetic structure with the sign se-
quence −− ++ for the x-component and + + −− for the y-component (µx = −2.8(1) µB and
µy = 0.5(2) µB). The amplitude of the Pr moment is equal to 2.9(2) µB and is smaller than the
free Pr3+ ion value (3.2 µB ). Two basis vectors belonging to two different irreducible represen-
tations describe the above-mentioned magnetic structure. They are τ3 for the x-component and
τ5 for the y-component—as may be seen from table 3. The Pr magnetic moments at 2d sites are
not ordered. The diffraction patterns also show that the Mn moments are ordered in the zy-plane
and form a non-collinear, antiferromagnetic structure with the sign sequence + − − + − + +−
for the z-component (with µz = 1.31(5) µB ), and + + + + − − −− for the y-component
(µy = 1.91(1) µB ). The amplitude of the Mn magnetic moment is equal to 2.3(1) µB . As is
the case for the Pr atoms, two basis vectors belonging to two different irreducible representa-
tions describe this ordering. They are τ6 for the z-component and τ5 for the y-component listed
in table 4. Such a situation means that the expression of the free energy of this structure cannot
be limited only to the quadratic approximation, and indicates higher order couplings between
different components of the magnetic moments. Near 25 K the 4e Pr moments disorder but the
ordering of the Mn moments remains similar to the magnetic structure observed at 1.5 K up to
the Néel temperature of 230 K. The refinement of the magnetic peak intensities at 40 K yields
µz = 1.50(5)µB , µy = 2.2(1) µB and the amplitude of the Pr magnetic moment of 2.7(1) µB .
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Table 3. Basic vectors of the irreducible representations k = (1, 1, 1) of the Immm space group
in the 4e positions; S(3, 4) = −S(1, 2).

(x, 0, 0) (x̄, 0, 0)

τ2 (1, 0, 0) (−1, 0, 0)
τ3 (1, 0, 0) (1, 0, 0)
τ5 (0, 1, 0) (0, 1, 0)
τ6 (0, 0, 1) (0, 0, −1)
τ7 (0, 0, 1) (0, 0, 1)
τ8 (0, 1, 0) (0, −1, 0)

Table 4. Basic vectors of the irreducible representations k = (1, 1, 1) of the Immm space group
in the 8n positions; S(5, 6, 7, 8) = −S(1, 2, 3, 4).

(x, y, 0) (x̄, ȳ, 0) (x̄, y, 0) (x, ȳ, 0)

τ1 (0, 0, 1) (0, 0, 1) (0, 0, −1) (0, 0, −1)
τ2 (1, 0, 0) (−1, 0, 0) (−1, 0, 0) (1, 0, 0)
τ ′

2 (0, 1, 0) (0, −1, 0) (0, 1, 0) (0, −1, 0)
τ3 (1, 0, 0) (1, 0, 0) (1, 0, 0) (1, 0, 0)
τ ′

3 (0, 1, 0) (0, 1, 0) (0, −1, 0) (0, −1, 0)
τ4 (0, 0, 1) (0, 0,−1) (0, 0, 1) (0, 0, −1)
τ5 (1, 0, 0) (1, 0, 0) (−1, 0, 0) (−1, 0, 0)
τ ′

5 (0, 1, 0) (0, 1, 0) (0, 1, 0) (0, 1, 0)
τ6 (0, 0, 1) (0, 0,−1) (0, 0, −1) (0, 0, 1)
τ7 (0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 0, 1)
τ8 (1, 0, 0) (−1, 0, 0) (1, 0, 0) (−1, 0, 0)
τ ′

8 (0, 1, 0) (0, −1, 0) (0, −1, 0) (0, 1, 0)

4.2.3. Nd3 Mn4 Sn4. The neutron diffraction pattern of Nd3Mn4Sn4 at 1.5 K is similar to the
one observed for Pr3Mn4Sn4 (see figure 4). All peaks of magnetic origin are indexed as the
ones for the conventional crystal unit cell. The magnetic structure at 1.5 K is similar to that
observed in Pr3Mn4Sn4:

• the Nd moments in the 2d sites do not order;
• the Nd moments in the 4e sites form a collinear structure with µx = −2.6(1) µB ,

µy = 1.4(1) µB and µtotal = 3.0(1) µB and
• the Mn moments in the 8n sites form a non-collinear structure with µy = 2.80(7) µB ,

µz = 1.53(4) µB and µtotal = 3.20(6) µB .

In the temperature range 60–200 K magnetic moment is localized only on the Mn atoms
and forms a non-collinear structure similar to that observed in Pr3Mn4Sn4 with 2.88(7) µB

for the y-component and 1.39(5) µB for the z-component at 60 K. The value of the amplitude
of the Mn moment decreases with the temperature from 3.2(1) µB at 60 K to 2.8(1) µB at
200 K. At T = 210 K a sharp jump of the intensity of the magnetic 100 peak is observed (see
figure 5(d)).

Figure 6 shows the temperature dependences of the lattice parameters a, b and c and the
unit cell volume V of Nd3Mn4Sn4. The temperature dependences of all lattice parameters
and the unit cell volume have minima at Tt equal to 60 K when the Nd moments order.
Below Tt the values of all these parameters increase with decreasing temperature. This result
indicates a positive sign of the magnetostriction. At the Néel temperature TN = 210 K jumps
in all of the lattice parameters a, b and c and of the unit cell volume V are observed. The
magnetostriction of all lattice parameters and the unit cell volume is negative at this magnetic
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Figure 6. Temperature dependence of the lattice parameters a, b and c and the volume of the unit
cell V in Nd3Mn4Sn4.

phase transition. These results for Nd3Mn4Sn4 are consistent with those observed in the
RMn2X2 compounds [10].

5. Discussion

The results obtained in this investigation show that the R3Mn4Sn4 (R = La, Pr, Nd) compounds
have complex magnetic properties. In La3Mn4Sn4 the Mn magnetic moments form a sine wave
modulated structure below the Néel temperature. The magnetic moment is parallel to the b-axis
and its amplitude is equal to 5.89(9) µB . The magnetic moment at the atom position r is given
by µ(r) = π

4 µ(k) = 4.63(7) µB . The value of the Néel temperature (300 K) determined from
the neutron diffraction data is in a good agreement with the magnetic data reported in [3].

Somewhat more complex magnetic orderings are observed for Pr3Mn4Sn4 and
Nd3Mn4Sn4. Below the Néel temperature (230 K for Pr3Mn4Sn4 and 210 K for Nd3Mn4Sn4)
the Mn moments form a non-collinear magnetic structure. At low temperatures, below 25 K
for Pr3Mn4Sn4 and 60 K for Nd3Mn4Sn4, the rare earth moments in the 4e sites form collinear
antiferromagnetic structures. Similar relations between the temperature of the ordering of the
magnetic moments in Mn and rare earth sublattices are observed in RT2X2 compounds [4].

The R3Mn4Sn4 (R = La, Pr, Nd) compounds investigated in this work crystallize in a
complicated crystal structure. The interatomic distances between the atoms calculated on the
basis of the crystal structure parameters listed in table 1 are presented in table 5. In all the three
R3Mn4Sn4 compounds the rare earth interatomic distances between the atoms at the 2d and
4e sites and between the rare earth moments at the 2d sites are rather large. This may mean
that the couplings between the rare earth moments at these sites are weaker than in the related
compounds and thus explain the absence of the ordering between the rare earth moments at
the 2d sites.

The Mn–Mn distance is smaller. For the Pr and Nd compounds the Mn–Mn distances
(dMn−Mn) are smaller than the critical Mn–Mn distances (dc = 2.85 Å) observed in the RMn2X2
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Table 5. The interatomic distances in R3Mn4Sn4 (R = La, Pr, Nd) compounds given in Å.

La3Mn4Sn4 Pr3Mn4Sn4 Nd3Mn4Sn4

R(4e)–R(4e) 3.92 3.77 3.69
R(2d)–R(2d) 7.458 7.427 7.451
R(2d)–R(4e) 4.213 4.158 4.165
R(2d)–Sn(4h) 3.251 3.239 3.149
R(2d)–Sn(4f) 3.265 3.407 3.217
R(4e)–Mn 3.320 3.137 3.313
R(4e)–Mn 3.446 3.446 3.346
R(4e)–Sn(4h) 3.378 3.268 3.331
R(4e)–Sn(4f) 3.360 3.209 3.292
R(4e)–Sn(4f) 3.950 4.039 3.945
Mn–Mn (in-plane) 2.879 2.748 2.718
Mn–Mn (out-of-plane) 3.549 3.210 3.408
Mn–Sn(4h) 2.684 2.973 2.700
Mn–Sn(4f) 2.929 2.777 2.898
Mn–Sn(4f) 2.830 2.688 2.727

(X = Si, Ge) compounds. In the RMn2Ge2 compounds the antiferromagnetic state appears
for dMn−Mn < 2.85 Å and the ferromagnetic state for dMn−Mn > 2.85 Å [1]. Similar critical
distances were observed in many alloys containing transition metals [11, 12]. Goodenough [13]
suggested that the localization–delocalization effect of the 3d electrons occurs when the critical
distance in the Mn compounds is 2.85 Å. The Mn–Mn distance in La3Mn4Sn4 is slightly larger
than the critical value. In the compounds investigated in this paper the observed dependence
of the Néel temperature value decreases with the decrease of the Mn–Mn distance. This result
is opposite to the results for the RMn2X2 (X = Si, Ge) where the Néel temperature decreases
with increasing Mn–Mn distances (see figure 32 in [14]).

In the temperature dependences of the intensity of the magnetic 200 peak and the Mn
magnetic moment value for Nd3Mn4Sn4 (see figure 5(d)) a sharp jump at the Néel temperature
is observed. This suggests that the phase transition at the Néel temperature is of first order.
Such a phase transition is accompanied by negative magnetostriction (see figure 6).
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